Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays

Kuei-Hsiang Chao *, Yu-Sheng Lin, Uei-Dar Lai

Department of Electrical Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan

HIGHLIGHTS

• This study proposed an improved PSO algorithm for MPPT in PV module arrays.
• A MPPT that incorporated shading and failure conditions in PV array is developed.
• The proposed MPPT method was built using improved particle swarm optimization.
• The proposed PSO algorithm can perform MPPT for multi-peak P–V characteristic curves.
• The proposed PSO algorithm exhibited superior tracking speed, response, and accuracy.

ABSTRACT

In this study, a maximum power point tracking (MPPT) method that incorporated shading and failure conditions in photovoltaic (PV) module arrays is developed. This MPPT method was built using improved particle swarm optimization (PSO). The PSO algorithm enables PV module arrays to perform MPPT for multi-peak power–voltage (P–V) output characteristic curves when shading or failures occur. This facilitates the tracking of actual maximum power points in PV module arrays. The HIP 2717 PV module produced by SANYO Electric Co., Ltd. was used in this study to assemble various array configurations. The characteristic curves of these array configurations when partial module shading or failure occurred were investigated. Numerous working conditions were selected for dual-peak, three-peak, and four-peak characteristics. PIC microcontrollers were then used to apply both the traditional and the proposed PSO algorithms to enable MPPT. A comparison of the measurement results showed that the proposed PSO algorithm exhibited superior tracking speed, response, and accuracy, compared with those of the traditional PSO algorithm.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Photovoltaic (PV) power generation systems are composed of PV module arrays, power conditioners, and power transmission and distribution systems. Irradiation and environmental temperature changes directly affect the output power of PV module arrays, resulting in significant variations. Therefore, maximum power point tracking (MPPT) technology must be used to control PV module arrays to maximize power output. The majority of early MPPT methods have emphasized the use of traditional techniques [1–5], such as voltage feedback [1] and the constant voltage [2], power feedback [3], perturb and observe [4], and the incremental conductance methods [5]. However, these traditional MPPT methods are inappropriate for working conditions in which partial module shading or failures can occur in PV module arrays. This is because the power–voltage (P–V) characteristics of PV module arrays display dual-peak or multi-peak characteristics when partial module shading or failures occur [6–8]. Traditional MPPT methods can only track local maximum power points, but not global maximum power points.

Recently, numerous scholars have proposed intelligent MPPT methods for PV module arrays [9–20] to track maximum power points accurately and improve dynamic and steady-state tracking performance. However, these methods are applicable to MPPT only in conditions where the modules in the PV module arrays are not shaded. Multi-peak output curves occur frequently when modules in PV module arrays are partially shaded. Therefore, the development of an algorithm capable of accurately tracking maximum power points on complex and nonlinear output curves is critical. Scholars have proposed various algorithm architectures that are capable of tracking global maximum power points when modules

* Corresponding author. Tel.: +886 4 2392 4505x7272; fax: +886 4 2392 2156. E-mail address: chaokh@ncut.edu.tw (K.-H. Chao).
are shaded. Among these, a two-stage method for tracking global maximum power points was suggested in [21]. However, when the global maximum power points are located to the left of the load line, this method could not track the maximum power points. In addition, this method is applicable only to tracking dual-peak characteristics. Another two-stage method for tracking global maximum power points was proposed in [22]. This method involved using a scanning program to determine curve regions containing global maximum power points. The program then applied the variable step size perturb-and-observe method to track the global maximum power points. However, this method must compare the maximum power points in each region before the global maximum power point can be derived, thereby limiting the tracking speed.

An MPPT algorithm built on the sequential extremum-seeking method was presented in [23]. This algorithm was built using approximate models and analysis of PV modules under different shading conditions. Staged searches are performed within the entire tracking range. Thus, this method provides higher computing efficiency compared with that of the sweeping search method. However, because this method adopts approximate models of PV module array shading characteristics, steady-state errors occur in the model and module parameters. A novel MPPT algorithm using artificial neural networks (ANNs) and fuzzy logic controllers was proposed in [24]. These ANNs are trained based on shading data obtained from the PV module arrays that use three-layer feedforward training to determine global maximum power point voltage. This algorithm is connected to system parameters and requires the use of sunlight and temperature data to determine global maximum power points. These data are difficult to obtain because sensors must first be installed to obtain information. Other experts and scholars have proposed replacing the single module array of maximum power point trackers that have been used traditionally with multiple-trackor architecture [25]. This architecture would avoid an excessive influence on the overall system power generation when only several modules are shaded or fail. Although this method effectively increases overall power generation efficiency, numerous direct current (DC)–DC converters must be used, which raises equipment costs. Several papers [26,27] have been proposed to improve the dynamic and steady state responses of MPPT by adaptively tuning tracking step size. Although these methods can successfully improve the dynamic and steady state tracking performance at a specific scaling factor, an optimal scaling factor is difficult to determine due to the scaling factor is not the same under different operation conditions. In [28], a monotonically decreased tracking step size was adopted to track the exact maximum power point, but the implementation of this technique is rather complex. Some soft computing methods [29–31] are developed for MPPT algorithm under fast changing environments. These methods can rapidly calculate current maximum power points, but highly complex calculations are required. Therefore, they are not suitable for practical application. In [32], chaos search method was proposed to accurately track the global maximum power point. However, experimental results did not verify the effectiveness of this method.

Recently, various scholars have presented MPPT techniques for PV module arrays based on PSO algorithms [33–38] to improve dynamic response speed. However, the characteristics of modules under partial shading were not considered in [33]. Thus, the method by [33] is applicable for MPPT only when all modules are under identical sunlight conditions. Although the method in [34] tracks global maximum power points effectively under conditions of varying amounts of shade, this method can be applied only to systems containing multiple converters. In addition, although the method in [35] can track global maximum power points with multi-peak characteristic curves, the learning factors and weight values in the algorithm are fixed. Thus, tracking performance lacks robustness, causing low success rates in the tracking of global maximum power points with limited iteration numbers. When maximum power points are tracked successfully, the dynamic response speed is slow. Improved PSO algorithms were presented in [36–38]. The method proposed by [36] lacks system design criteria and practical design considerations. Reference [37,38] improved the traditional PSO algorithm for application to shaded PV module arrays. However, the linear decreasing method was used for parameter selection in this PSO algorithm. This parameter selection is not optimized for PV module arrays with nonlinear characteristics, particularly characteristics that occur under shaded conditions.

Therefore, in this study, the parameters of a retentive PSO algorithm [39] were adjusted using nonlinear methods to shorten tracking time and develop an MPPT method that is superior to the traditional MPPT methods used in PV module arrays under conditions of partial module shading or failure. The proposed method showed increased effectiveness in MPPT when multi-peak P–V characteristic curves appeared in the PV module arrays.

2. Shading and failure characteristics in PV module arrays

Arrays composed of HIP 2717 PV modules [40] that are produced by SANYO Electric Co., Ltd. were the test objects in this study. Table 1 shows the electrical specifications of these modules under standard testing conditions (AM1.5, sunlight intensity of 1000 W/m² and PV module temperature of 25 °C).

2.1. PV module simulator circuitry

To facilitate experimentation on PV module array shading and failure characteristics, an HIP 2717 PV module simulator containing adjustable partial shadow and failure circuitry was used, as shown in Fig. 1 [41]. The circuit architecture comprised a Darlington pair amplification circuit, an output current limiter, and a voltage stabilization circuit to enable implementation of PV modules containing various shading characteristics. Variable resistors \( R_{CH} \) and \( VR_{VOC} \) were adjusted to possess both open-circuit voltage and short-circuit current output characteristics at various shade ratios. The \( R_B \) and \( VR_{VOC} \) divider circuits were used to adjust shade ratios. When a \( V_{Y} \) power supply is not provided, the PV module simulator does not contain output power; this is equivalent to setting the PV module to failure conditions.

The BJT transistor 2N3055, with ratings of \( I_C = 15 A, V_{CEO} = 60 V, P_{TOT} = 115 W, \) and \( h_{FE} = 20, \) was chosen for the output transistor \( Q_1. \) Then, the 2N2219, with ratings of \( I_C = 0.8 A, P_{TOT} = 3 W, V_{CEO} = 50 V, \) and \( h_{FE} = 20, \) was chosen for \( Q_2. \) To form a Darlington amplifier with \( Q_2. \) Accordingly, the 2N1815, with ratings of \( I_C = 150 mA, P_{TOT} = 400 mW, V_{CEO} = 50 V, \) and \( I_B = 50 mA, \) was chosen for \( Q_3 \) and \( Q_4 \) to serve as the base current driver of \( Q_3. \)

In the PV module simulator circuit, the resistance values of \( R_B, R_C \) and \( R_D \) are given 2 kΩ, 2 kΩ, 2 Ω, and 510 Ω, respectively. According to the shadow ratios of a PV module, the open-circuit voltage, \( V_{OC} \), and short-circuit current, \( I_{SC} \), can be determined according to their \( I-V \) characteristic curves, using either a

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Electrical specifications of the SANYO HIP 2717 PV modules.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum output power ( (P_{MP}) )</td>
<td>27.8 W</td>
</tr>
<tr>
<td>Maximum power point current ( (I_{MP}) )</td>
<td>1.63 A</td>
</tr>
<tr>
<td>Maximum power point voltage ( (V_{MP}) )</td>
<td>17.1 V</td>
</tr>
<tr>
<td>Short-circuit current ( (I_{SC}) )</td>
<td>1.82 A</td>
</tr>
<tr>
<td>Open-circuit voltage ( (V_{OC}) )</td>
<td>21.6 V</td>
</tr>
<tr>
<td>Module length and width specifications</td>
<td>496 mm × 524 mm</td>
</tr>
</tbody>
</table>
simulation or experiment. Therefore, the values of $V_{Roc}$ and $V_{Roc}$ in the proposed PV module simulator can be determined for shadow ratios ranging from 0% to 80%. In the PV module simulator circuit, variable resistors of 5 kΩ and 1 kΩ are chosen for $V_{Roc}$ and $V_{Roc}$, respectively.

2.2. Analysis of PV module array series and parallel characteristics

2.2.1. Characteristics in conditions without shading or failure

In a $N$-series $M$-parallel PV module array without shading or failure, if the power point voltage, maximum power point current, and maximum power point of a single PV module are represented by $V_{mp}$, $I_{mp}$, and $P_{mp}$, respectively, then the maximum power point voltage of the $N$-series $M$-parallel array is $V = N \times V_{mp}$, the maximum power point current is $I = N \times I_{mp}$, and the maximum power point is $P = N \times P_{mp}$.

2.2.2. Characteristics in conditions with shading or failure

When modules in the module array fail, the modules form loops through bypass diodes to maintain some generating capacity in the PV module array. Although these diodes improve the output power reductions exhibited when several modules fail, the diodes cannot improve the reductions in output voltage and current that occur when modules are shaded. In addition, when the PV module-shading ratio becomes excessively high, the output power exhibits dual or multiple peaks. This prevents MPPT from controlling the module arrays to operate at the actual maximum power points.

Because of these characteristics in actual PV module arrays, a SANYO HIP 2717 module simulator [40] was used in this study. The simulator was set to various shade ratios and failure conditions to assemble PV module arrays with different series–parallel configurations for MPPT testing. Fig. 2 shows a four-series one-parallel $P$–$V$ array characteristic composed of SANYO HIP 2717 PV modules. These $P$–$V$ characteristic curves were obtained at 30% shading conditions (sc) for different numbers of shaded modules. The figure shows that multiple peaks occurred in the $P$–$V$ characteristic curve when partial shading occurred on several array modules. When failure occurred in the PV module array, each module that failed lost the ability to function and did not output electric current to supply the load. The electric current from the working modules flowed through the bypass diode of the failed modules, thereby enabling the working modules to continue functioning normally. Fig. 3 presents the $P$–$V$ output characteristic curves for different numbers of failed modules. The figure shows that multiple peaks did not occur in the $P$–$V$ characteristic curves when some modules of the same series array failed.

3. MPPT method using the traditional and proposed PSO algorithm

Kennedy and Eberhart proposed the PSO algorithm in [39]. This concept originates from group-behavior theory and was inspired by the observation that groups of birds and fish pass messages between individual members to enable the entire group to move forward toward the same objects and directions. The PSO algorithm imitates this biological behavior when seeking benefit-maximization methods for an entire group.

3.1. MPPT method using the traditional PSO algorithm

The steps of the traditional PSO algorithm are as follows.

Step 1: Set the number of particles $P$ and the iteration numbers $N$.

Step 2: Initialize the value of each particle (in this study, this is duty cycle $D$ of the boost converter). Begin initial movement speed $V_i^0$ for each particle. Initialize the individual optimal $D$ value $P_{best}$ (i.e., the initial $D$ value) for each particle. Initialize the optimal $D$ value $G_{best}$ for all particles.

Step 3: Given cognition-only learning factor $C_1$, social-only learning value $C_2$, and inertia weight $W$, insert the initial $D$ values for each particle into (1) to obtain the newest speed. Update the $D$ value in (2).

$$V_{i}^{t+1} = W \times V_{i}^{t} + C_1 \times \text{rand1}(\cdot) \times (P_{best,i} - P_{i}^{t}) + C_2 \times \text{rand2}(\cdot) \times (G_{best} - P_{i}^{t})$$

(1)


\[ P_i^{i+1} = V_i^{i+1} + P_i^i \] (2)

Step 4: Compare the power values produced by \( P_i^{i+1} \) and \( P_i^i \) at the \( D \) value and substitute the larger value for \( P_{\text{best}_i} \). Step 5: Compare the power values produced by \( P_{\text{best}_1} \) and \( G_{\text{best}} \) at the \( D \) value and substitute the larger value for \( G_{\text{best}} \). Step 6: Repeat Steps 3–5 until completing the set number of iterations.

The relevant parameters used in traditional PSO are explained as follows.

Number of particles: \( P \) represents the number of points tracked at different initial duty cycle \( D \) values. Iteration number: \( N \) denotes the number of times each particle moves. Cognition-only learning factor: \( C_1 \) represents the learning parameters associated with individual particles. Social-only learning factor: \( C_2 \) denotes the learning parameters associated with other particles. Inertia weight: \( W \) represents the correlation with the most recent particle movement distance. \( V_i^j \): This variable denotes the movement speed of the \( i \)th particle during the \( j \)th iteration. \( P_i^j \): This variable denotes the duty cycle \( D \) value for the \( i \)th particle during the \( j \)th iteration. \( \text{Rand1}() \): This variable represents a value between 0 and 1 generated by the first random number generator. \( \text{Rand2}() \): This variable represents a value between 0 and 1 generated by the second random number generator. \( P_{\text{best}_i} \): This denotes the optimal duty cycle \( D \) value for the \( i \)th particle. \( G_{\text{best}} \): This variable represents the optimal duty cycle \( D \) value for all particles.

In general, \( C_1, C_2, \) and \( W \) in the traditional PSO algorithm are fixed values set to \( W = (10 - C_1 - C_2)/10 \).

3.2. MPPT method using the proposed PSO algorithm

A traditional PSO-based MPP tracker has been specifically designed to track the global MPP on a characteristic curve with multiple peaks, but in the absence of robustness, since all the weights remain constant during the entire iterative process. In other words, it gives a low probability that the MPP can be successfully tracked within a specified number of iterations, and gives a slow dynamic response in a successful MPP tracking event. In view of this, this work is proposed as an improved version of typical tracking algorithms when dealing with the global MPP tracking issue experienced in an array involved partially shaded or even malfunctioning PV modules.

The proposed PSO algorithm involves adjusting Step 3 of the traditional PSO. Variables \( C_1, C_2, \) and \( W \) were altered to calculate (3)–(5) to obtain linear changes; thus, \( C_1, C_2, \) and \( W \) vary for each iteration.

\[ C_1 = C_{1,\max} - (C_{1,\max} - C_{1,\min}) \times \frac{2^j + 1}{2^N + 1} \] (3)

\[ C_2 = C_{2,\min} + (C_{2,\max} - C_{2,\min}) \times \frac{2^j + 1}{2^N + 1} \] (4)

\[ W = W_{\max} - (W_{\max} - W_{\min}) \times \frac{2^j + 1}{2^N + 1} \] (5)

The parameters added for the proposed PSO are explained as follows.

Cognition-only learning factor upper limit: \( C_{1,\max} \) represents the upper limit to the learning parameters associated with the particles. Cognition-only learning factor lower limit: \( C_{1,\min} \) denotes the lower limit to the learning parameters associated with the particles. Social-only learning factor upper limit: \( C_{2,\max} \) represents the upper limit to the learning parameters associated with other particles. Social-only learning factor lower limit: \( C_{2,\min} \) denotes the lower limit to the learning parameter associated with other particles. Inertia weight upper limit: \( W_{\max} \) represents the upper limit to the correlation with movement distances of individual particles. Inertia weight lower limit: \( W_{\min} \) denotes the lower limit to the correlation with movement distance of individual particles.

For example, if \( C_{1,\max} = 4, C_{1,\min} = 1, C_{2,\max} = 4, C_{2,\min} = 1, W_{\max} = 0.8, W_{\min} = 0.2, \) and \( N = 10 \), (3)–(5) can be calculated to change \( C_1, C_2, \) and \( W \) (shown in Fig. 4). The figure shows that \( C_1 \) and \( W \) in the proposed PSO decreased when the iteration number increased, which indicates that the ability to reference the optimal positions of the individual particles decreased when the iteration number increased. However, \( C_2 \) increased when the iteration number increased, indicating that the global optimal particle reference results gained more weight when the iteration number increased.

The steps for the proposed PSO algorithm are nearly identical to those of the traditional PSO algorithm. The proposed algorithm only differs because (3)–(5) are adopted for the \( C_1, C_2, \) and \( W \) parameters in Step 3 to enable adjustments according to the iteration number.

![Fig. 4. Parameter value changes in the proposed PSO](image-url)}
Table 2
Rated component-design values of the DC/DC boost converter.

<table>
<thead>
<tr>
<th>Element names</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductor (L)</td>
<td>1 mH</td>
</tr>
<tr>
<td>Capacitor (Cₘ)</td>
<td>470 µF/450 V</td>
</tr>
<tr>
<td>Capacitor (Cₜ)</td>
<td>470 µF/450 V</td>
</tr>
<tr>
<td>Switching frequency (f)</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Transistor</td>
<td>IRF460 (500 V/20 A)</td>
</tr>
<tr>
<td>Diode</td>
<td>DSEP310-12A (1200 V/30 A)</td>
</tr>
</tbody>
</table>

Table 3
Parameter settings of the traditional PSO algorithm.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle number (P)</td>
<td>3</td>
</tr>
<tr>
<td>Iterations (N)</td>
<td>30</td>
</tr>
<tr>
<td>Cognition-only learning factor (C₁)</td>
<td>3</td>
</tr>
<tr>
<td>Social-only learning factor (C₂)</td>
<td>3</td>
</tr>
<tr>
<td>Inertia weigh (W)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 4
Parameter settings of the proposed PSO algorithm.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle number (P)</td>
<td>3</td>
</tr>
<tr>
<td>Iterations (N)</td>
<td>30</td>
</tr>
<tr>
<td>Cognition-only learning factor upper limit (C₁,ₘₜ)</td>
<td>3</td>
</tr>
<tr>
<td>Cognition-only learning factor lower limit (C₁,ₘₜ)</td>
<td>1</td>
</tr>
<tr>
<td>Social-only learning factor upper limit (C₂,ₘₜ)</td>
<td>3</td>
</tr>
<tr>
<td>Social-only learning factor lower limit (C₂,ₘₜ)</td>
<td>1</td>
</tr>
<tr>
<td>Inertia weigh upper limit (Wₘₜ)</td>
<td>0.8</td>
</tr>
<tr>
<td>Inertia weigh lower limit (Wₘₜ)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Fig. 5. Proposed PSO maximum power tracking controller architecture.

Table 5
Selected indicative test cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>Partial shading or failure conditions</th>
<th>Number of P–V curve peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-series 1-parallel: 0% shading</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2-series 2-parallel: 0% shading + 0% shading + 0% shading</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4-series 1-parallel: 0% shading + 0% shading + 30% shading + 50% shading</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4-series 1-parallel: 0% shading + 30% shading + 50% shading + 70% shading</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4-series 1-parallel: 50% shading + failure + 30% shading + 0% shading</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2-series 2-parallel: 0% shading + 0% shading + 0% shading</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: The symbol + represents the series connections and the symbol // represents parallel connections.

The PIC181F8720 microprocessor manufactured by Microchip Technology was used to implement the conventional PSO method in the empirical test. First, the parameter values in the iteration formula of Table 3 were set, with the iteration number being set to zero. The initial position of each particle was set randomly (i.e., duty cycle of the boost converter). The PWM control signal with this initial value was transmitted to the boost converter to activate a power semiconductor switch. Subsequently, the output voltage and current values of the PV module array were extracted using a sensor and transmitted to the microcontroller through the analog-to-digital converter to calculate the power value. Subsequently, the initial settings were described as follows. The calculated power value and particle position (duty cycle of the boost converter) were predetermined as the P_best and Vᵢ of the first iteration, respectively. The highest power of a particle among all of the particles was determined to be the G_best and Vᵢ of the first iteration. The aforementioned settings were substituted into the PSO kernel iteration formula, increasing each iteration number by 1. If a particle attained a power value exceeding that of the P_best value after a duty cycle update, then the P_best and Vᵢ values would be updated. If any of the particles attained a power value higher than that of the G_best value, then the G_best and Vᵢ values would be updated, completing the iteration. These steps were repeated until the maximal iteration number was achieved. The iteration process of the proposed PSO method was realized using a process identical to that of the conventional PSO method, except that the adjustment of parameter values in the iteration formula were adjusted according to Table 4 and (3)–(5).

4. Measurement results for the traditional PSO and proposed PSO tracking methods

This section presents the measurements of the characteristic curves for the six working conditions shown in the PV module...
simulator circuitry composition table in Fig. 1 under various shading ratios and failure conditions. PIC microcontrollers were used to implement the traditional and proposed PSO MPPT methods. The tracking performances were compared.

4.1. Characteristic curves under six working conditions

Figs. 6–11 present the current–voltage (I–V) and P–V characteristic curves measured under the six working conditions that were depicted in Table 5. Figs. 6 and 7 show that short-circuit current $I_{sc}$ did not change when two PV modules were connected in a series, although the open-circuit voltage $V_{oc}$ doubled. When connected in parallel, the open-circuit voltage $V_{oc}$ did not change, whereas the short-circuit current $I_{sc}$ doubled. Therefore, in conditions at fixed temperatures, fixed irradiation, and without partial shading or failure, the size of the open-circuit voltage $V_{oc}$ in the PV module array and the number of series modules were proportional. Short-circuit current $I_{sc}$ was also proportional to the number of parallel modules and multiple peaks did not occur in the P–V characteristic curves. Figs. 8 and 9 indicate that $N$ number of peaks occurred in the P–V characteristic curve when $N$ modules received different ratios of shade within the same series. Fig. 10 indicates that the P–V characteristic curves were unaffected by failure and presented $N$ number of peaks when module failure occurred within a single series in an array and $N$ modules were tested using different ratios of shade. Fig. 11 presents two-series two-parallel module array...
configurations with all modules not shaded in one series and failure in one module in the other series. In this connection configuration, although three modules were not shaded and only one module failed, two peaks appeared in the $P-V$ characteristic curve.

4.2. PV module array MPPT measurements

In this study, the measured waveforms were power characteristic curves that were obtained by using Excel to multiply voltage and current signals after recording the voltage and current data from the module arrays. This section presents how observations were performed and how the advantages and disadvantages of the two measured waveforms were compared to facilitate future comparisons of the traditional PSO and proposed PSO measurement results.

For example, the horizontal timeline shown in Fig. 12 contains two intervals: $t_0 - t_1$ and $t_1 - t_2$. The time between $t_0$ and $t_1$ was the preparation time for the duty cycle to approach 0. At this time, the voltage approached the open-circuit voltage and the current was extremely low. Because a fixed duty cycle was adopted, the voltage, current, and power were all fixed values. The time between $t_1$ and $t_2$ was the time required by the duty cycle to change from the 1st iteration to the 30th iteration. To facilitate observation of these altered results, this time was extended by a short period after the duty cycle changed for each iteration. Therefore, the total time required for the 30 iterations was approximately 0.12 s and the average iteration time was approximately 0.004 s ($=0.12/30 = 4$ ms). The time between $t_1$ and $t_2$ indicates that the voltage, current, and power changed following alterations in the duty cycle. At this time, power increased rapidly from $P_1$ to $P_a$, only requiring $(t_a/C_0-t_1)$ time. The interval in which power increased from $P_a$ to $P_b$ was $(t_b/C_0-t_a)$ time. Beginning at $t_a$, the power curve tended to gradually move toward a stable value until stopping at $t_2$. The results in Fig. 12 indicate that short $(t_a-t_1)$ time represented increased speeds in power tracking from $P_1$ to $P_a$. When the power value at time $t_b$ approached the power value at time $t_2$, this indicated that the MPPT beginning at $t_b$ was gradually stabilizing. These methods were used to observe and compare the performance advantages and disadvantages of the traditional and proposed PSO methods. The performance was based on whether

![Fig. 12](image_url) Voltage, current, and power response waveforms for the PV module arrays during MPPT.

![Fig. 13](image_url) Measurement results from a one-series one-parallel module array without shading: (a) traditional PSO method ($P_{mp} = 21.74$ W); (b) proposed PSO method ($P_{mp} = 21.95$ W).

![Fig. 14](image_url) Measurement results from a two-series two-parallel module array without shading: (a) traditional PSO method ($P_{mp} = 95.64$ W); (b) proposed PSO method ($P_{mp} = 96.51$ W).
increased $P_b$ values could be tracked and which method provided the faster response speed at 30 iterations.

Fig. 13(a) and (b) show the measured response waveforms for the traditional and proposed PSO methods for Case 1, which was previously shown in Table 5. In the tracking iteration formula of the proposed PSO, the weighting ($W$) and learning factors ($C_1$ and $C_2$) varied as the iteration number increased. In the initial iteration period, because the working point was distant from the MPP, a high weighting and large steps were adopted for tracking MPP. In the initial tracking period, maximal power values that were tracked by individual particles exerted a considerable effect; thus, a large cognition-only learning factor ($C_1$), which accelerated the tracking speed of the proposed PSO method compared with that of the conventional one. As the iteration number increased, the tracked working point would gradually approach the global MPP and the effect of the individual particles’ maximal power value would decrease as the effect of the global particles’ maximal power value increased. Thus, the $W$ and $C_1$ values were reduced, and the social-only learning factor ($C_2$) was added to reduce oscillations near the tracked working point, thereby improving the steady-state tracking performance of the maximal power tracker. As shown in Fig. 13(a), the tracking time of the conventional PSO required 20 ms from $t_1$ to $t_a$, whereas the tracking time required only 15 ms from $t_1'$ to $t_a'$ when the proposed PSO was adopted. Thus, the measured quantitative data verified that the proposed PSO had a tracking time 5 ms faster than that of the conventional PSO. After 30 iterations, the $P_b'$ value (21.95 W) from the proposed PSO method was close to the $P_b$ value (21.74 W) of the traditional PSO method; therefore, the proposed PSO method exhibited superior performance. Therefore, a comparison of the results presented in Fig. 13(a) and (b) indicated that although both methods could track maximum power points, the $(t_a' - t_1')$ time obtained using the proposed PSO method was shorter than the $(t_a - t_1)$ time obtained using the traditional PSO method.

Fig. 14(a) and (b) depict the measured response waveforms for the traditional and proposed PSO methods for Case 2, which was previously shown in Table 5. In the initial iteration period, the $W$ and $C_1$ values of the proposed PSO method’s tracking iteration formula were increased for maximal power tracking because the working point was distant from the MPP. The effect of the individual particles’ maximal power value was considerable in the initial tracking period; thus, a large cognition-only learning factor (i.e., $C_1$) was adopted, which enabled a faster initial tracking speed in the proposed PSO method than in the conventional one. As the iteration number increased, the tracked working points increased and gradually approached the MPP. In addition, the effect of the individual particles’ maximal power value decreased, whereas the effect of the global particles’ maximal power value increased. Thus, the $W$ and $C_1$ values were reduced, and the social-only learning factor (i.e., $C_2$) was incorporated to reduce oscillations near the tracked working point. Consequently, the final tracked maximal power value was high. The methods for adjusting the iteration parameters of the proposed PSO are listed in Table 4 and (3)–(5). The design of the conventional PSO adopted iteration parameters with fixed values (Table 3); thus, the conventional PSO method lacked robustness. The figures show that the tracking time $t_1'$ obtained using the proposed PSO method was close to $t_1$ at the beginning of the test and the final maximum power value was high. Therefore, the proposed PSO method exhibited superior tracking performance compared with the traditional PSO method.

![Fig. 15. Measurement results for a four-series one-parallel module array under working conditions of 0% shading + 0% shading + 30% shading + 50% shading: (a) traditional PSO ($P_{mp} = 60.14$ W); (b) proposed PSO ($P_{mp} = 60.36$ W).](image1)

![Fig. 16. Measurement results for a four-series one-parallel module array under working conditions of 0% shading + 30% shading + 50% shading + 70% shading: (a) traditional PSO ($P_{mp} = 34.38$ W); (b) proposed PSO ($P_{mp} = 42.39$ W).](image2)
Figs. 15–18 depict the tracking response waveforms measured by performing MPPT using both the traditional and proposed PSO methods in module arrays containing shading or failure. Fig. 15 presents the measured waveforms for current, voltage, and power tracking in the four-series one-parallel module array for Case 3 under working conditions of 0% shading + 0% shading + 30% shading + 0% shading.

Fig. 15(a) and (b) indicate that both methods approached the maximum power point within a short period. However, \((t'_{\alpha} - t_{\alpha})\) time was shorter than \((t_{\alpha} - t_{\alpha})\) time. After 30 iterations, \(P_{b}\) was slightly greater than \(P_{a}\). Thus, the proposed PSO method was superior to the traditional PSO method.

Fig. 16 shows the measured current, voltage, and power tracking waveforms for the four-series one-parallel module array for Case 4 under working conditions of 0% shading + 0% shading + 30% shading + 50% shading.

Fig. 16(a) and (b) indicate that the traditional PSO method was consistently trapped at local maximum power points within 30 iterations. The proposed PSO method approached the true maximum power point within the elapsed \((t'_{\alpha} - t_{\alpha})\) time. In addition, \(P_{b}\) (42.39 W) was greater than \(P_{a}\) (34.38 W). Thus, the tracking performance of the proposed PSO was superior to that of the traditional PSO.

Fig. 17 presents the measured current, voltage, and power tracking waveforms for the four-series one-parallel module array for Case 5 under working conditions of 50% shading + failure + 30% shading + 0% shading.

Fig. 17(a) and (b) show that the \((t'_{\alpha} - t_{\alpha})\) time for the proposed PSO was shorter than the \((t_{\alpha} - t_{\alpha})\) time of the traditional PSO. The initial \(t'_{\alpha}\) approached \(t_{\alpha}\). In addition, \(P_{b}\) was slightly greater than \(P_{a}\) after 30 iterations. Therefore, the tracking performance of the proposed PSO was superior to that of the traditional PSO.

Fig. 18 presents the measured current, voltage, power tracking waveforms for the two-series two-parallel module array for Case 6 under conditions of (0% shading + 0% shading) // (failure + 0% shading).

Fig. 18(a) and (b) indicate that the initial \((t'_{\alpha} - t_{\alpha})\) time for the proposed PSO was shorter than the \((t_{\alpha} - t_{\alpha})\) time for the traditional PSO. In addition, \(P_{b}\) from the proposed PSO was slightly greater than \(P_{a}\) from the traditional PSO after 30 iterations. Therefore, the tracking performance of the proposed PSO was superior to that of the traditional PSO.

5. Conclusions

This study proposed an improved PSO algorithm for MPPT in PV module arrays. To accelerate the efficiency and performance of PSO tracking, an exponential-form parameter control method was presented. This method used exponential increases or decreases in the cognition-only learning factor, the social-only learning factor, and the inertia weight to reduce iteration numbers and improve tracking success. The results showed that the proposed PSO algorithm could track actual maximum power points faster and more accurately in PV module arrays under conditions of partial module shading or failure than could the traditional PSO algorithm. In addition, the test results from six selected partial shading or failure conditions indicated that the average iteration numbers required for successful MPPT using the proposed PSO was 21.1. By contrast, the average iteration number required for success using the
traditional PSO was 38.3. These results confirm that the proposed PSO method improved the success rate of tracking. Therefore, applying the proposed PSO method to MPPT in PV module arrays, particularly when various modules are partially shaded or have failed, is feasible.

Although various configuration arrays composed of different PV modules exhibited an identical trend in slopes, the slopes and slope variations of the \( P-V \) characteristic curves were dissimilar. Therefore, to improve the dynamic and steady-state performance of the maximal power tracker, the proposed PSO method can adjust the parameter values of the PSO iteration formula through online adaptive tuning, only according to the slope characteristics of the individual \( P-V \) characteristic curves. Therefore, relevant quantitative design methods can be discussed and analyzed in future research.

Acknowledgments

The authors gratefully acknowledge the support of the National Science Council, Taiwan, Republic of China, under the Grant NSC 102–2221–E–167–009.

References


