化學反應器安全 – 找出起始分歧點之研究
Chemical reactor safety – a study to find the start bifurcation point

錢玉樹、邱維銘、林彥佑
Yu-Shu Chien, Wei-Ming Chiu, and Yen-Yu Lin

1 國立勤益科技大學化工與材料工程學系
1 Department of Chemical and Materials Energy Engineering,
National Chin-Yi University of Technology
E-mail：yschien@ncut.edu.tw, cwm@mail.ncut.edu.tw, s19314038@hotmail.com

摘要
Chemical reactor is an important unit of the chemical process. When the exothermic reaction occurs heat generation and the heat will not remove feasible, the reaction system will occur unstable, heat uncontrollable, moreover, the reactor explosion and the accident happen. This study suggests three methods to overcome the shortcoming of the tangent analysis method which cannot find the bifurcation start point. This paper uses a simulated example of a gas-solid exothermic catalytic reaction with two components to prove that our method is workable. Additionally, this study compares the advantage and disadvantage of three methods.

Abstract
Chemical reactor is an important unit of the chemical process. When the exothermic reaction occurs heat generation and the heat will not remove feasible, the reaction system will occur unstable, heat uncontrollable, moreover, the reactor explosion and the accident happen. This study suggests three methods to overcome the shortcoming of the tangent analysis method which cannot find the bifurcation start point. This paper uses a simulated example of a gas-solid exothermic catalytic reaction with two components to prove that our method is workable. Additionally, this study compares the advantage and disadvantage of three methods.

Keywords: Chemical Reactor, Exothermic, Tangent Analysis Method, Bifurcation Start Point

1. 前言

化學反應器是化工製程很重要的單元，一般化學反應是伴隨著放熱，且熱量移除設計不好會產生多重穩態的問題；進一步，更會發生系統不穩定，熱失控，更嚴重會發生反應器爆炸等問題。本研究克服切線分析法無法找出起始分歧點之缺點，提出三種方法，並以特性方程式為四階的雙成分進料放熱觸媒氣固化學反應為例，證明本研究所提三種方法之是可行的，進一步再比較三種方法優缺點。

反應器(Continuous Flow Stirred Tank Reactor，CSTR)，在一般放熱、生化反應、自身催化反應、氣固觸媒放熱反應等多重穩態問題做有系統探討。

就作者所知，目前解決反應器多重穩態的方法有三種，包括分歧法(Bifurcation method)、奇異理論法(Singularity theory)與切線分析法(Tangent analysis method)。前兩種方法數學分析嚴謹，對一般化工學者若沒有精通高階數學的人是比較困難；最後的切線分析法對有興趣從事解決反應器多重穩態問題的學者是最直接，也是最方便的方法，它具有很容易被瞭解的物理觀念及相對簡單的數學式，僅於反應系統太複雜時較無法完成析。

本研究考慮一般化工廠之反應器所常見之化學反應，並以切線分析法為主軸，探討切線分
析法所求得特性方程式使用上困難；且只能找出發生多重穩態的必要條件與充分條件，對反應器設計要避開多重穩態的發生只能使用必要條件與充分條件查核或先以圖解方式找出多重穩態區域判定。因此，若能確切找出發生多重穩態的分岐點，對於反應器設計是有很大助益。

本研究提出三種方法克服切線分析法缺點，針對特性方程式為四階的雙成分進料放熱觸媒氣固化學反應為例，證明本研究所提三種方法之可行性；進一步再比較三種方法優缺點。

2. 系統
2.1 數學模式
假設輸入的氣體是稀釋的，且輸入的質量流量等於輸出的質量流量；再假設氣相是良好的混合，且與固相有質量與熱量的傳遞。考慮一個雙成分的非絕熱化學反應系統，其反應式為

\[A + \eta B \rightarrow \text{Products} \]

經過質量均衡得到

\[q_a(C_{a0} - C_{a1}) = 0 \] (2)
\[q_B(C_{b0} - C_{b1}) = 0 \] (3)

熱傳效應:

\[q_a(T_0 - T) + h_a(T - T_C) - U_A(T_C - T) = 0 \] (4)

固體觸媒相質量均衡與能量均衡如下:

\[k_aA(C_{a1} - C_{a}) = 0 \] (5)
\[k_bA(C_{b1} - C_{b}) = 0 \] (6)

經數學運算與代入化學反應式:

\[\frac{q}{\eta} = A_f \exp\left(-\frac{E}{RT}\right)C_a^nC_b^m \] (8)

可得圖1之多重穩態之情形[1]。

2.2 切線分析法─找出系統特性方程式
切線分析法於1979年Lin[2-5]提出，主要的精髓是將系統質量平衡之放熱與移熱平衡式，由切線分析找出系統特性方程式；並進一步找出之產生分歧點必要與充分條件，由這些條件可以提醒反應器操作者避免在此區域操作。但切線分析法之缺點就是使用上述之分歧點必要與充分條件公式非常煩瑣，因此若能透過數學方法找到開始產生分歧點之條件，就能克服上述缺點。本研究提出如下三種方法克服上述缺點。

2.3 本系統特性方程式
由圖1觀察得，產生多重穩態之必要條件為(9)式左邊與右邊相同，斜率也相同，因此可以導出特性方程式F(X)=0；藉著錢等人[6]所發表之方程式根判別法，應用於本研究反應系統，將可克服一般文獻[7]對一元二次方程式無法解分歧點之困難，亦可同時找出起始分歧點與不同分歧點。

方程式(9)經過複雜數學運算整理，可推出本系統特性方程式如下：

\[\Delta \beta\left(n+m-1\right)X^4 + \beta\left(2n\beta+2m+2+\alpha+\beta-2\right)P(n\beta-\beta)X^3 + \left[\beta(-2n\beta-2m\Delta-\alpha-\beta+\beta+2\Delta) + \Delta(n+m-1)X^2 + \left[\beta(\alpha-\beta+1)+\Delta(1-m)\right]X-P=0 \] (12)
3. 研究方法

3.1 根判別法

四階方程式：

$$ F(X) = AX^4 + BX^3 + CX^2 + DX + E = 0 $$ \hspace{1cm} (13)

整理成：

$$ F(X) = X^4 + aX^3 + bX^2 + cX + d = 0 $$ \hspace{1cm} (14)

其中

$$ a = B/A \quad b = C/A \quad c = D/A \quad d = E/A $$ \hspace{1cm} (15)

再令 $X = Y - a/4$，得

$$ Y^4 + pY^2 + qY + r = 0 $$ \hspace{1cm} (16)

其中 $q = a^3 / 8 - ab / 2 + c$

$$ p = b - 3 / 8a^2 $$ \hspace{1cm} (17)

經由下式 3 次方程式之根可求得 Y_1, Y_2, Y_3, Y_4

$$ Z^2 + (p/2)Z^2 + ((p^2 / 4r) - (q^2 / 64))Z + (-q^2 / 256) = 0 $$ \hspace{1cm} (18)

它們相互相之關係如下 ($q < 0$ 時, 使用負號; $q = 0$ 時使用正號):

$$ Y_i = \pm (-\sqrt{Z_i} - \sqrt{Z_i} \pm \sqrt{Z_i}) $$ \hspace{1cm} (19)

$$ Y_1 = \pm (\sqrt{Z_1} + \sqrt{Z_1} + \sqrt{Z_1}) $$
$$ Y_2 = \pm (\sqrt{Z_2} - \sqrt{Z_2} - \sqrt{Z_2}) $$
$$ Y_3 = \pm (\sqrt{Z_3} \pm \sqrt{Z_3} \pm \sqrt{Z_3}) $$
$$ Y_4 = \pm (\sqrt{Z_4} \pm \sqrt{Z_4} \pm \sqrt{Z_4}) $$

為了便於討論, 令 $Z = Z - (p/2) / 3$

將(18)式轉成三次標準方程式如下:

$$ Z^3 + pZ + q = 0 $$ \hspace{1cm} (20)

其中

$$ p = [(p^2 - 4r) / 16 - p^2 / 12] $$
$$ q = [-q^2 / 64 - p / 2]((p^2 - 4r) / 16) / 3 + 2(p / 2)^3 / 27 $$ \hspace{1cm} (21)

其三次方程式根可以使用卡丹(Cardan)公式分析如下:

$$ Z_1 = -\sqrt{q/2 + \sqrt{q^2 / 4 - 2MR}} $$
$$ Z_2 = w\sqrt{q/2 + \sqrt{q^2 / 4 - 2MR}} $$
$$ Z_3 = w^2\sqrt{q/2 + \sqrt{q^2 / 4 - 2MR}} $$
$$ Z_4 = w^3\sqrt{q/2 + \sqrt{q^2 / 4 - 2MR}} $$ \hspace{1cm} (22)

其中 $R = q / 4 + p / 27$

$$ w = (-1 + \sqrt{-3}) / 2, \quad w^2 = (-1 - \sqrt{-3}) / 2 $$

$$ Z_i = Z_i - (p / 2) / 3, \quad i = 1, 2, 3, \text{由}(10) \text{得}, Z_3 = Z_3 $$

若 q 已知, 則 a 容易求出。

又因 $Z_i = (-a_1 + b_1)i$, 得 $-q / 2 = -a^3$

若 $b_1=0$, $a_1=a_2=0$ 時, $Z_i = -2\alpha, Z_i = -\alpha$

又因 $Z_i = Z_i - (p / 2) / 3, i = 1, 2, 3, \text{由}(10) \text{得}, Z_3 = Z_3 $$

結果總整理如下:

(i) 反應系統的操作參數值已知
(ii) 帶入(13)式求係數 A, B, C, D, E
(iii) 代入(15)式求係數 a, b, c, d
(iv) 代入(17)式求係數 p, q, r
(v) 代入(22)式求係數 p 與 q

(vi) 檢驗 $\sqrt{R} = 0$, 並由 $-q / 2 = -a^3$ 求出 a
計算 \(Z_i = \overline{Z_i} = -\overline{a} \) (vii)

計算 \(Z_i = \overline{Z_i} = -\overline{(p/2)} \), \(i = 1, 2, 3 \) (viii)

由 (19) 式求 \(Y_1, Y_2, Y_3, Y_4 \) 其中 \(Y_3 = Y_4 \) (ix)

計算 \(X_i = Y_i
(a/4) \), \(i = 1, 2, 3, 4 \) (x)

經過上述之分析計算, 可以得到起始分岐點 (\(X_{Ad} = X_{Ab} = X_{a_0} \)), 將此點代入 (9) 式求出 \(\theta_{a_0} \), 也由於得到了起始分歧點的數據資料, 我們可以提出单一穩態與高轉化率的操作策略。

3.2 Sturms 法

一實數特性方程式

\[F(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 = 0 \] (28)

\(a_0 \neq 0 \) 在沒有重根下, 由如下方式找出

\[F_0(X) = F(X) \] (29)

\[F_1(X) = dF(X)/dx \] (30)

\[F_i(X) = - \left(F_{i-i}(X) / F_{i-1}(X) \right) \] (31)

餘數 for \(i > 1 \)

直到找出 \(F_a(X) = 0 \) 是一個常數為止

由 Sturm 法, 只要算出在 \(a \) 與 \(b \) 區間 \((a > b) \) 的 \(N(a) \) 與 \(N(b) \), 其中 \(N(a) \) 與 \(N(b) \) 分別是 \(F_0(a) \), \(F_1(a) \), \(F_2(a) \), \(F_3(a) \), \ldots, 之正負變號次數與 \(F_0(b) \), \(F_1(b) \), \(F_2(b) \), \(F_3(b) \), \ldots, 之正負變號次數, 由 \(N(a) \) 與 \(N(b) \) 計算的值就可以找出在 \(a \) 與 \(b \) 區間 \((a > b) \) F(X) 的實根, 因此利用 Sturm 法就可找出若有系統分歧點在 \(X = a = 0 \) (沒有反應) 與在 \(X = a = 1 \) (完全反應)。

以四階方程式為例

\[F(X) = AX^4 + BX^3 + CX^2 + DX + E = 0 \] (32)

使用 Sturm 法, 可得

\[F_0(X) = AX^4 + BX^3 + CX^2 + DX + E \] (33)

\[F_1(X) = 4AX^3 + 3BX^2 + 2CX + D \] (34)

\[F_2(X) = K_1 X^2 + K_2 X + K_3 \] (35)

\[F_3(X) = K_4 X + K_5 \] (36)

\[F_4(X) = K_6 \] (37)

\(A(a > 0), B, C, D \) 和 \(E \) 是係數和

\[K_1 = 3B^2/(16A) - C/2 \] (38)

\[K_2 = 2BC/(16A) - 3D/4 \] (39)

\[K_3 = BD/(16A) - E \] (40)

\[K_4 = 4AK_2/(K_1) - 2C \] (41)

\[K_5 = [K_3(3B - 4A K_2/K_1) - 2C] \] (42)

\[K_6 = [(K_2 - K_5 K_1)/(K_4)] K_5 - K_3 \] (43)

3.3 Routh 穩定法

Routh 準則

本研究修正 Routh 法將其應用於特性方程式, 並導出剛開始發生多重穩態分歧點條件。(A)Routh 法之說明如下：

已知 \(n \) 次多項式

\[a_n S^n + a_{n-1} S^{n-1} + \ldots + a_1 S + a_0 = 0 \] (44)

其中 \(a_n, a_{n-1}, \ldots, a_1, a_0 \) 是多項式係數, 決定有多少的正實數根。"多項式具有正實數根的數目可由下面行列中左一行改符號的數目決定。行列如下：

第一列 \(a_0, a_n, a_{n-2}, a_{n-4}, \ldots, a_1 \) 0 (45)

第二列 \(a_{n-1}, a_{n-3}, a_{n-5}, \ldots, a_0 \) 0 (46)

第三列 \(b_1, b_2, b_3, \ldots, 0, 0 \) (47)

第四列 \(c_1, c_2, c_3, \ldots, 0, 0 \) (48)

第 \(n \) 列 \(e_1, e_2, e_3, \ldots, 0, 0 \) (49)

第 \(n+1 \) 列 \(e_1, 0, 0, \ldots, 0, 0 \) (50)
其中第三列到 n+1 列可由下列計算得：
\[
b_l = (a_{n+1-l} - a_ka_{n-l}) / a_{n-l}
\]
\[
b_2 = (a_{n-2} - a_ka_{n-3}) / a_{n-3}
\]
\[
c_1 = (b_1 - a_{n-3}a_2) / b_1
\]
\[
c_2 = (b_1a_{n-4} - a_{n-4}b_1) / b_1
\]
(51)
直到所有的新項是零。
(B) 修正 Routh 法之說明如下：

我們考慮剛開始發生多重穩定分歧點條件為四個實根中，有兩個重根（設定為 X_3）在 0 與 1 之間，基於此條件，我們將 Routh 法座標改變 S 為 X，並將座標 X 移至 X_4 處，此時修正 Routh 法 4 次多項式為修正為
\[
a_{45}X^4 + a_{35}X^3 + a_{25}X^2 + a_{15}X + a_{05} = 0
\]
(52)
其中 a_{45}, a_{35}, a_{25}, a_{15}, a_{05} 與 a_4, a_3, a_2, a_1, a_0 多項式係數關係為
\[
a_{45} = a_4 + a_3, \quad a_{35} = 4a_4 X_3 + a_3,
\]
\[
a_{25} = 6a_4 X_3^2 + 3a_3 X_3 + a_2,
\]
\[
a_{15} = 4a_4 X_3^3 + 3a_3 X_3^2 + 2a_2 X_3,
\]
\[
a_{05} = a_4 X_3^4 + a_3 X_3^3 + a_2 X_3^2 + a_1 X_3 + a_0
\]
(53)
其 Routh 陣列如下：

第一列 a_{45} a_{25} a_{05} 0
第二列 a_{35} a_{15} 0
第三列 b_{15} b_{25} 0
第四列 c_{15} c_{25} 0
第五列 d_{15} d_{25} 0

其中
\[
b_1 = (a_{35}a_{25} - a_{25}a_{15}) / a_{35},
\]
\[
b_2 = (a_{35}a_{05} - a_{25}a_0) / a_{35},
\]
\[
c_1 = (b_1a_{25} - a_{25}b_1) / b_1
\]
\[
c_2 = (b_1a_{15} - a_{15}b_1) / b_1
\]
\[
d_1 = (c_1b_2 - d_1c_2) / c_1
\]
\[
d_2 = (c_1b_3 - d_2c_3) / c_1
\]
(55)

所以剛開始發生多重穩定分歧點條件為四個實根中，有兩個重根 (X_3) 在 0 與 1 之間，基於此條件，我們得到 c_{15} 與 d_{15} 皆為零，即
\[
d_{15} = b_{25} = a_{05}
\]
\[
d_{15} = a_4 X_3^4 + a_3 X_3^3 + a_2 X_3^2 + a_1 X_3 + a_0 = 0
\]
\[
c_{15} = a_{15} = 4a_4 X_3^3 + 3a_3 X_3^2 + 2a_2 X_3 = 0
\]
4.3 Routh 稱定法

由表3知，當X=0時，第一行變號次數三次，
當X=1時，變號次數：3-1=2 即為轉化率 0-1之
間有兩個根。在使用 Routh 修正法，將x=0.296303
代入時，變號次數，且第一行最後兩個值為 0，
驗證此為重根，與前兩種方法一致。

<table>
<thead>
<tr>
<th>表3. Routh 稱定法計算結果(公式52~54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P=1.5)</td>
</tr>
<tr>
<td>Routh 稱定法 ((x=0))</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>11.4555</td>
</tr>
<tr>
<td>-25.115</td>
</tr>
<tr>
<td>10.49907</td>
</tr>
<tr>
<td>-1.5</td>
</tr>
<tr>
<td>表3. Routh 稱定法 ((x=1))</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>15.4555</td>
</tr>
<tr>
<td>16.14543</td>
</tr>
<tr>
<td>3.186785</td>
</tr>
<tr>
<td>-1.5</td>
</tr>
<tr>
<td>表3. Routh 稱定法 ((x=0.296303))</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>12.64761</td>
</tr>
<tr>
<td>-13.4291</td>
</tr>
<tr>
<td>-0.00017</td>
</tr>
<tr>
<td>6.98E-05</td>
</tr>
</tbody>
</table>

5. 結論

綜合上述計算結果，顯示根判別法計算公式
上較為複雜，需事先找出重根條件，進而可計算
出起始分歧點：Sturms 需事先計算 Fi(x)，計算上
方便；Routh 稱定法方便，但有可能會找到共軛
虛根，造成無法判斷。若用我們提出之修正 Routh
稱定法，需要試誤法找出手起始分歧點，並以第
一行最後兩個元素值為 0 滿足，才能確認起始分
歧點存在。

總結這三種方法皆可找出化學反應器多重
零點之起始分歧點，幫助我們避開反應器操作在
多重穩定危險區域。

6. 符號說明

- \(q \): Gas flow rate
- \(C_{a0}, C_{b0}, C_{ai}, C_{bi} \): Reactant concentration in the solid phase, at the reactor inlet, in the gas phase, and dimensionless reactant concentration in the solid phase respectively
- \(k_{a}, k_{b} \): Mass transfer coefficient between the gas phase and the solid phase
- \(A \): Mass transfer or heat transfer area between the gas phase and the solid phase
- \(C_{p} \): Specific heat
- \(V \): Volume of solid catalysts
- \(H \): Heat transfer coefficient between the gas phase
- \(\Delta H \): Heat of reaction
- \(R \): Reaction rate
- \(A_{r} \): Frequency factor
- \(E \): Activation energy
- \(T \): Temperatures in the solid phase, of gas fed, in the gas phase, of the coolant
- \(U \): Heat transfer coefficient between coolant and gas phase
- \(n, m \): Reaction order
- \(X \): Conversion of reactant in the solid catalysts
- \(\alpha \): Dimensionless activation energy
- \(\beta \): Dimensionless heat of reaction
- \(\theta \): Damkohler number
- \(\rho \): Density of gas

7. 參考文獻

1. 劉子為、林彥佑、周俊宏、錢玉樹，『氣-固觸媒非絕熱反應之多重穩定研究』，第 22 屆台灣
區觸媒與反應工程研討會，義守大學，第 349~354 頁，2005。
6. 錢玉樹、張漢昌、王文微、陳志欣，『避免 CSTR 放熱反應對多重穩定之研究-使用方程式根判
斷法』，程式系統工程研討會，台灣大學，第 58~65 頁，2003。